g) $\frac{d y}{d x}=(4-y) x,(1,5)$
h) $\frac{d y}{d x}=\frac{x}{\sin y},(4,-\pi)$
6. Bacteria in a culture increased from 400 to 1600 in three hours. Assuming the rate of increase is proportional to the population:
a) Find the exponential equation to model the population.
b) Find the number of bacteria at the end of six hours using your equation from part a).
7. Radium -226 loses its mass at a rate that is directly proportional to its mass. Its half-life is $\mathbf{1 5 9 0}$ years, and if we start with a sample of radium-226 with a mass 100 mg : (Note: $\mathbf{h}=\frac{\boldsymbol{\operatorname { l n } 2}}{\boldsymbol{k}}$)
a) Find the formula for the mass that remains after t years.
b) Find the mass after 1000 years
c) When will the mass be reduced to 30 mg ?
8. The rate at which a bacterial culture grows is directly proportional to the amount present. At $t=3$ hours there are 8000 bacteria. At $t=7$ hours there are 17000 bacteria.
a) How many bacteria will be present at $t=9$ hours?
b) How many bacteria were there initially?
9. Suppsoe the amount of oil pumped from a well decreases at a rate of 10% per year. When will the well's output fall to one fifth of its present level.
10. An apple pie, whose internal temperature was $220^{\circ} \mathrm{F}$ when removed from an oven, was set outside to cool on a $40^{\circ} \mathrm{F}$ day. Fifteen minutes later, the pie was $180^{\circ} \mathrm{F}$. How long did it take the pie to cool from there to $70^{\circ} \mathrm{F}$?
11. A pan of warm water at $46^{\circ} \mathrm{C}$ was put in a refrigerator. Ten minutes later, the water's temperature was $39^{\circ} \mathrm{C}$. 10 minutes after that it was $33^{\circ} \mathrm{C}$. Using Newton's law of Cooling, how cold was the fridge?

