Graphing Quadratic Functions in Vertex Form

Learning targets:

- Use the parameters from vertex form to determine:
 - a) the coordinates of the vertex
 - b) axis of symmetry
- Use the vertex form equation to determine the yintercept.
- Graph a quadratic function in vertex form using a minimum of 5 points.

To sketch the graph of a quadratic function

We need to determine a minimum of 5 points:

- → the location of the vertex
 - We get this from the values of h and k in the equation.
- → the location of the y-intercept and its reflection across the axis of symmetry
- → the coordinates of at least one more point and its reflection across the axis of symmetry (at least two more points if the y-intercept is too small or too large to fit on the graphing grid given)

Steps for sketching the graph of a quadratic function:

- 1. Determine the coordinates of the vertex using h and k.
 - Plot this point on the grid
 - Sketch in the axis of symmetry as a dotted vertical line running through the vertex
- 2. Calculate the *y*-intercept
 - Plot this point on the grid, if it fits
 - Plot the reflection of this point on the other side of the axis of symmetry
- Calculate at least one more point using an x-value close to the vertex
 - Plot this point and its reflection on the other side of the axis of symmetry
 - Join all of your points to draw the parabola

Example: Sketch $f(x) = (x - 3)^2 - 8$

Axis of symmetry:

$$x=3$$

y-intercept:

$$(3,-8)$$
 $\frac{x}{3}$ $\frac{x}{$

Example: Sketch $f(x) = -\frac{1}{2}(x+4)^2 + 2$

Axis of symmetry:

y-intercept:

Additional point(s):

Assignment

Handout: #1 - 6