b)

- /	
Statement	Justification
∠BED = 55°	Given
AC ED	Proven
∠BFG = ∠BED	Property of similar triangles
∠BFG = 55°	
FG ED	For FG and ED, corresponding
	angles are equal.

C)

,	
Statement	Justification
$\angle ABF = 55^{\circ}$	Given
∠BFG = 55°	Proven
∠BFG = ∠BED	Property of equality
AC FG	Alternate interior angles are
	equal.

7. e.g., In each row of parking spots, the lines separating each spot are parallel. The line down the centre is the transversal to the two sets of parallel lines.

8. e.g., Yes, the sides are parallel. The interior angles are supplementary and so the lines are always the same distance apart.

Lesson 2.3: Angle Properties in Triangles, page 90

No. It only proves the sum is 180° in that one triangle.
 Disagree. The sum of the three interior angles in a triangle is 180°.

3. a)

Statement	Justification
∠WXY = 101°	Given
$\angle YXZ + \angle WXY = 180^{\circ}$ $\angle YXZ = 79^{\circ}$	Supplementary angles
$\angle XYZ = 64^{\circ}$	Given
$\angle YXZ = 79^{\circ}$	11000011
$\angle Z + \angle YXZ + \angle WXY = 180^{\circ}$	Sum of interior
∠Z = 37°	angles in triangle

b)

Statement	Justification
∠ <i>BCE</i> = 134°	Given
∠ACB + ∠BCE = 180°	Supplementary
$\angle ACB = 46^{\circ}$	angles
∠DCE = ∠ACB	Vertically opposite
∠ <i>DCE</i> = 46°	angles
∠ <i>B</i> = 49°	Given
$\angle A + \angle B + \angle ACB = 180^{\circ}$	Sum of interior
∠A = 85°	angles in triangle

4. The lengths of *QR* and *QS* are equal, so $\triangle QRS$ is isosceles. So, the measures of $\angle R$ and $\angle S$ are equal by definition.

Statement	Justification
Let the measure of $\angle Q$ be <i>n</i> , in	
degrees.	Property of
$\angle R = \angle S$	isosceles
	triangle
$\angle Q + \angle R + \angle S = 180^{\circ}$	Sum of interior
$n^{\circ} + \angle R + \angle R = 180^{\circ}$	angles of
$2 \angle R = (180 - n)^{\circ}$	triangle
	Substitute the
$\angle R = \frac{1}{2} (180 - n)^{\circ}$	known
2 , ,	quantities.

5.

Statement	Justification
BC, BC, CD, and AD are equal	Given
in length.	
In $\triangle BCD$, since the three sides	Property of
are equal, $\triangle BCD$ is equilateral.	equilateral
Therefore,	triangle
∠ <i>CBD</i> = 60°	
∠C = 60°	
$\angle BDC = 60^{\circ}$	
$\angle BDA + \angle BDC = 180^{\circ}$	Supplementary
∠ <i>BDA</i> = 120°	angles
In $\triangle ABD$, since two sides are	Property of
equal, $\triangle ABD$ is isosceles.	isosceles triangle
Therefore,	_
$\angle DBA = \angle A$	
$\angle A + \angle DBA + \angle BDA = 180^{\circ}$	Sum of interior
∠A + ∠A + 120° = 180°	angles of a
2∠A = 60°	triangle
∠A = 30°	Substitute known quantities.

6. e.g., Draw an equilateral triangle to help you.

Statement	Justification
For equilateral $\triangle ABC$, the	Property of
measures of the three angles are	equilateral
equal. So,	triangle
∠A = 60°	
∠ <i>B</i> = 60°	
∠ <i>ACB</i> = 60°	
$\angle ACD$ is the exterior angle to $\angle A$	Given
and $\angle B$.	
$\angle ACD + \angle ACB = 180^{\circ}$	Supplementary
∠ <i>ACD</i> = 120°	angles

D

7.

Statement	Justification
∠AND = 98°	Given
∠DYS = 29°	Given
For $\triangle NSY$,	Sum of interior
$\angle ASY + \angle AND + \angle DYS = 180^{\circ}$	angles in
∠ASY=53°	triangle
∠SAD = 127°	Given
$\angle ASY + \angle SAD = 180^{\circ}$	Property of
	equality
SY AD	Interior angles
	on same side of
	transversal are
	supplementary.

8. a) The sum of *a*, *c*, and *e* is 360°.

b) Yes. Pairs of vertically opposite angles, so b = a, d = c, f = e. So, the sum of *b*, *d*, and *f* is also 360°. **c)**

Statement	Justification
<i>x</i> + <i>a</i> = 180°	Supplementary
<i>a</i> = 180° – <i>x</i>	angles
<i>y</i> + <i>c</i> = 180°	Supplementary
$c = 180^{\circ} - y$	angles
<i>z</i> + <i>e</i> = 180°	Supplementary
e = 180° – z	angles
$x + y + z = 180^{\circ}$	Sum of interior
	angles in triangle
Let <i>S</i> = <i>a</i> + <i>c</i> + <i>e</i> .	
$S = (180^{\circ} - x) + (180^{\circ} - y)$	Substitute for the
+ (180° – <i>z</i>)	known quantities.
$S = 540^{\circ} - (x + y + z)$	
S = 540° – 180°	
S = 360°	

9. a) If *DUCK* is a parallelogram, the measures of opposite pairs of angles are equal. In Benji's solution, $\angle D$ should equal $\angle C$, but does not.

b)

Statement	Justification
DK UC	Property of
∠ <i>KUC</i> = 35°	parallelogram
	Given
∠DKU = ∠KUC	Alternate interior
∠DKU = 35°	angles
∠ <i>KDU</i> = 100°	Given
180° = ∠ <i>DUK</i> + ∠ <i>DKU</i> + ∠ <i>KDU</i>	Sum of interior
∠DUK = 180° – (35° + 100°)	angles of
∠DUK = 45°	triangle
	Substitute for
	the known
	quantities
DU KC	Property of
	parallelogram
∠UKC = ∠DUK	Alternate interior
∠ <i>UKC</i> = 45°	angles
$\angle UCK = \angle KDU$	Opposite angles
∠UCK = 100°	in parallelogram

10. e.g.,

Statement	Justification
∠ <i>MTH</i> = 45°	Given
∠ <i>AMT</i> = 45°	Given
∠MTH = ∠AMT	Property of equality
MA HT	Alternate interior angles are equal.
∠ <i>HT</i> A = 110°	Given
∠ <i>MHT</i> = 70°	Given
∠ <i>HTA</i> + ∠ <i>MHT</i> = 180°	Property of equality
MH AT	Interior angles on same side of transversal are supplementary

11.

Statement	Justification
a = 30°	Vertically opposite
	angles are equal.
<i>b</i> + 30° = 180°	Supplementary angles
<i>b</i> = 150°	
<i>d</i> + 115° = 180°	Supplementary angles
<i>d</i> = 65°	
<i>c</i> + <i>d</i> + 30° = 180°	Sum of interior angles in
<i>c</i> = 85°	triangle

12. e.g.,

a) Disagree. ∠FGH and ∠IHJ are not corresponding angles, alternate interior angles, or alternate exterior angles.
b)

5)

Statement	Justification
∠GFH = 180° – (55° + 75°)	The sum of the angles
∠ <i>GFH</i> = 50°	of <i>△FGH</i> is 180°
FG HI	$\angle GFH$ and $\angle IHJ$ are
	equal corresponding
	angles.

13.

Statement	Justification	
∠ <i>NOP</i> = 110°	Given	
∠J = 110°	Corresponding angles	
∠ <i>LK</i> O = 140°	Given	
$\angle JKO + \angle LKO = 180^{\circ}$	Supplementary angles	
∠ <i>JK</i> O = 40°		
$\angle JOK + \angle J + \angle JKO = 180^{\circ}$	Sum of interior angles	
∠JOK = 30°	in triangle	
∠ <i>LNO</i> = 140°	Opposite angles in	
	parallelogram are	
	equal.	
$\angle NOK + \angle LNO = 180^{\circ}$	Interior angles on	
∠NOK = 40°	same side of	
	transversal	
$\angle KLN = 40^{\circ}$	Opposite angles in	
	parallelogram are	
	equal.	
$\angle LNM + \angle LNO = 180^{\circ}$	Supplementary angles	
$\angle LNM = 40^{\circ}$		
$\angle JON = \angle KON + \angle JOK$	Property of equality	
$\angle JON = 70^{\circ}$		

$\angle M + \angle JON = 180^{\circ}$ $\angle M = 110^{\circ}$	Interior angles on same side of transversal
$\angle MLN + \angle LNM + \angle M = 180^{\circ}$ $\angle MLN = 30^{\circ}$	Sum of interior angles in triangle
$\angle KLM = \angle KLN + \angle MLN$ $\angle KLM = 70^{\circ}$	Property of equality

14.

Statement	Justification
∠AFN = 115°	Given
∠NFU + ∠AFN = 180 <i>°</i>	Supplementary
$\angle NFU = 65^{\circ}$	angles
∠ <i>BNU</i> = 149°	Given
∠UNF + ∠BNU = 180°	Supplementary
∠ <i>UNF</i> = 31°	angles
$\angle FUN + \angle NFU + \angle UNF = 180^{\circ}$	Sum of interior
∠ <i>FUN</i> = 84°	angles in triangle

15. a)

Statement	Justification
$\angle YXZ = 35^{\circ}$	Given
$\angle AXZ + \angle YXZ = 180^{\circ}$	Supplementary
∠AXZ = 145°	angles
$\angle XZY = 50^{\circ}$	Given
$\angle EZY + \angle XZY = 180^{\circ}$	Supplementary
∠ <i>E</i> ZY = 130°	angles
$\angle XYZ + \angle YXZ + \angle XZY = 180^{\circ}$	Sum of interior
∠XYZ = 95°	angles in
	triangle
$\angle XYC + \angle XYZ = 180^{\circ}$	Supplementary
∠XYC = 85°	angles

b) $\angle AXZ + \angle XYC + \angle EZY = 145^{\circ} + 85^{\circ} + 130^{\circ}$ $\angle AXZ + \angle XYC + \angle EZY = 360^{\circ}$

16.

Statement	Justification
MO and NO are angle	Given
bisectors.	
∠LNP is an exterior	Given
angle for $ riangle LMN$.	
∠L + 2a = 2b	Exterior angle is equal
∠L = 2b – 2a	to sum of the two non-
$\angle L = 2(b-a)$	adjacent angles.
∠ONP is an exterior	Given
angle for $\triangle MNO$.	
∠O + a = b	Exterior angle is equal
∠O = b – a	to sum of the two non-
	adjacent angles.
∠L = 2(b – a)	Substitute for the
$\angle L = 2(\angle O)$	known quantity.

17. e.g., Drawing a parallel line through one of the vertices and parallel to one of the sides creates three angles whose sum is 180°. The two outside angles are equal to the alternate interior angles in the triangle. The middle angle is the third angle in the triangle. Therefore, the three angles in the triangle add up to 180°.

 $\angle PAB = \angle ABC$ and $\angle QAC = \angle ACB$

18.

Statement		Justification
∠BAE = ∠CAE		Property of
		angle bisector
BC = CD		Property of
		isosceles
		triangle
$\angle ABD = 90^{\circ} +$	У	Property of
		equality
$\angle DAB + \angle ABD + \angle BDA = 180^{\circ}$		Sum of interior
$2x + (90^{\circ} + y) + y = 180^{\circ}$		angles in
2x + 2y =	= 90°	$\triangle ABD$
x + y =	= 45°	Substitute.
$\angle AEB = x + y$	∠AEB	is an exterior
∠AEB = 45°	angle f	or <i>∆AED</i> . An
	exterio	r angle is equal
	to sum	of the two non-
	adjace	nt angles.
	Substit	ute.

19. e.g.,

Statement	Justification
LM = LN	Property of isosceles triangle
LR MN	Given
∠DLR = ∠LMN	Corresponding angles
$\angle RLN = \angle LNM$	Alternate interior angles
$\angle LMN = \angle LNM$	Property of isosceles triangle
$\angle DLR = \angle RLN$	Transitive property