b)

Statement	Justification			
$\angle B E D=55^{\circ}$	Given			
$A C \\| E D$		Proven	$\angle B F G=\angle B E D$	
:---:	:---			
$\angle B F G=55^{\circ}$	Property of similar triangles \quad	$F G \\| E D$	For $F G$ and $E D$, corresponding angles are equal.	
:---:	:---			

c)

Statement	Justification	
$\angle A B F=55^{\circ}$	Given	
$\angle B F G=55^{\circ}$	Proven	
$\angle B F G=\angle B E D$	Property of equality	
$A C \\| F G$	Alternate interior angles are equal.	

7. e.g., In each row of parking spots, the lines separating each spot are parallel. The line down the centre is the transversal to the two sets of parallel lines.
8. e.g., Yes, the sides are parallel. The interior angles are supplementary and so the lines are always the same distance apart.

Lesson 2.3: Angle Properties in Triangles, page 90

1. No. It only proves the sum is 180° in that one triangle.
2. Disagree. The sum of the three interior angles in a triangle is 180°.
3. a)

Statement	Justification
$\angle W X Y=101^{\circ}$	Given
$\begin{aligned} \angle Y X Z+\angle W X Y & =180^{\circ} \\ \angle Y X Z & =79^{\circ} \end{aligned}$	Supplementary angles
$\begin{aligned} & \angle X Y Z=64^{\circ} \\ & \angle Y X Z=79^{\circ} \end{aligned}$	Given Proven
$\begin{aligned} \angle Z+\angle Y X Z+\angle W X Y & =180^{\circ} \\ \angle Z & =37^{\circ} \end{aligned}$	Sum of interior angles in triangle

b)

Statement	Justification
$\angle B C E=134^{\circ}$	Given
$\angle A C B+\angle B C E=180^{\circ}$	Supplementary
$\angle A C B=46^{\circ}$	angles
$\angle D C E=\angle A C B$	Vertically opposite
$\angle D C E=46^{\circ}$	angles
$\angle B=49^{\circ}$	Given
$\angle A+\angle B+\angle A C B=180^{\circ}$	Sum of interior
$\angle A=85^{\circ}$	angles in triangle

4. The lengths of $Q R$ and $Q S$ are equal, so $\triangle Q R S$ is isosceles. So, the measures of $\angle R$ and $\angle S$ are equal by definition.

Statement	Justification
Let the measure of $\angle Q$ be n, in degrees.$\angle R=\angle S$	Property of isosceles triangle
$\angle Q+\angle R+\angle S=180^{\circ}$	Sum of interior angles of $n^{\circ}+\angle R+\angle R=180^{\circ}$
$2 \angle R=(180-n)^{\circ}$	triangle Substitute the known quantities.
$\qquad R=\frac{1}{2}(180-n)^{\circ}$	

5.

Statement	Justification
$B C, B C, C D$, and $A D$ are equal in length.	Given
In $\triangle B C D$, since the three sides are equal, $\triangle B C D$ is equilateral. Therefore, $\begin{aligned} \angle C B D & =60^{\circ} \\ \angle C & =60^{\circ} \\ \angle B D C & =60^{\circ} \end{aligned}$	Property of equilateral triangle
$\begin{aligned} \angle B D A+\angle B D C & =180^{\circ} \\ \angle B D A & =120^{\circ} \end{aligned}$	Supplementary angles
In $\triangle A B D$, since two sides are equal, $\triangle A B D$ is isosceles. Therefore, $\angle D B A=\angle A$	Property of isosceles triangle
$\begin{aligned} \angle A+\angle D B A+\angle B D A & =180^{\circ} \\ \angle A+\angle A+120^{\circ} & =180^{\circ} \\ \angle A & =60^{\circ} \\ \angle A & =30^{\circ} \end{aligned}$	Sum of interior angles of a triangle Substitute known quantities.

6. e.g., Draw an equilateral triangle to help you.

Statement	Justification
For equilateral $\triangle A B C$, the measures of the three angles are equal. So,Property of equilateral $\angle A=60^{\circ}$	triangle
$\angle B=60^{\circ}$	
$\angle A C B=60^{\circ}$	
$\angle A C D$ is the exterior angle to $\angle A$ Given and $\angle B$. Supplementary angles $\angle A C D+\angle A C B=180^{\circ}$ $\angle A C D=120^{\circ}$	

7.

Statement	Justification	
$\angle A N D=98^{\circ}$	Given	
$\angle D Y S=29^{\circ}$	Given	
For $\triangle N S Y$, $\angle A S Y+\angle A N D+\angle D Y S=180^{\circ}$ $\angle A S Y=53^{\circ}$	Sum of interior angles in triangle	
$\angle S A D=127^{\circ}$	Given	
$\angle A S Y+\angle S A D=180^{\circ}$	Property of equality	
$S Y \\| A D$	Interior angles on same side of transversal are supplementary.	

8. a) The sum of a, c, and e is 360°.
b) Yes. Pairs of vertically opposite angles, so $b=a$, $d=c, f=e$. So, the sum of b, d, and f is also 360°.
c)

Statement	Justification
$\begin{aligned} x+a & =180^{\circ} \\ a & =180^{\circ}-x \end{aligned}$	Supplementary angles
$\begin{aligned} y+c & =180^{\circ} \\ c & =180^{\circ}-y \end{aligned}$	Supplementary angles
$\begin{aligned} z+e & =180^{\circ} \\ e & =180^{\circ}-z \end{aligned}$	Supplementary angles
$x+y+z=180^{\circ}$	Sum of interior angles in triangle
$\begin{aligned} \text { Let } S & =a+c+e . \\ S= & \left(180^{\circ}-x\right)+\left(180^{\circ}-y\right) \\ & +\left(180^{\circ}-z\right) \\ S= & 540^{\circ}-(x+y+z) \\ S= & 540^{\circ}-180^{\circ} \\ S= & 360^{\circ} \end{aligned}$	Substitute for the known quantities.

9. a) If $D U C K$ is a parallelogram, the measures of opposite pairs of angles are equal. In Benji's solution, $\angle D$ should equal $\angle C$, but does not.
b)

Statement	Justification	
$D K \\| U C$ $\angle K U C=35^{\circ}$	Property of parallelogram Given	
$\angle D K U=\angle K U C$	Alternate interior angles	
$\angle D K U=35^{\circ}$	Given	
$\angle K D U=100^{\circ}$	$180^{\circ}=\angle D U K+\angle D K U+\angle K D U$ $\angle D U K=180^{\circ}-\left(35^{\circ}+100^{\circ}\right)$ $\angle D U K=45^{\circ}$	
Sum of interior angles of triangle Substitute for the known quantities		
$D U \\| K C$	Property of parallelogram	
$\angle U K C=\angle D U K$	Alternate interior angles	
$\angle U K C=45^{\circ}$	Opposite angles in parallelogram	
$\angle U C K=\angle K D U$		
$\angle U C K=100^{\circ}$		

10. e.g.,

Statement	Justification			
$\angle M T H=45^{\circ}$	Given Given			
$\angle A M T=45^{\circ}$		\quad	$\angle M T H=\angle A M T$	Property of equality
:---	:---			
$M A \\| H T$	Alternate interior angles are equal.			
$\angle H T A=110^{\circ}$	Given Given			
$\angle M H T=70^{\circ}$	Property of equality			
$\angle H T A+\angle M H T=180^{\circ}$	Interior angles on same side of transversal are supplementary			
$M H \\| A T$				

11.

Statement	Justification
$a=30^{\circ}$	Vertically opposite angles are equal.
$b+30^{\circ}=180^{\circ}$	Supplementary angles
$b=150^{\circ}$	
$d+115^{\circ}=180^{\circ}$	Supplementary angles
$d=65^{\circ}$	
$c+d+30^{\circ}=180^{\circ}$	Sum of interior angles in triangle
$c=85^{\circ}$	

12. e.g.,
a) Disagree. $\angle F G H$ and $\angle I H J$ are not corresponding angles, alternate interior angles, or alternate exterior angles.
b)

Statement	Justification	
$\angle G F H=180^{\circ}-\left(55^{\circ}+75^{\circ}\right)$	The sum of the angles of $\triangle F G H$ is 180°	
$\angle G F H=50^{\circ}$	$\angle G F H$ and $\angle I H J$ are equal corresponding angles.	
$F G \\| H I$		

13.

Statement	Justification
$\angle N O P=110^{\circ}$	Given
$\angle J=110^{\circ}$	Corresponding angles
$\angle L K O=140^{\circ}$	Given
$\begin{aligned} \angle J K O+\angle L K O & =180^{\circ} \\ \angle J K O & =40^{\circ} \end{aligned}$	Supplementary angles
$\begin{aligned} \angle J O K+\angle J+\angle J K O & =180^{\circ} \\ \angle J O K & =30^{\circ} \end{aligned}$	Sum of interior angles in triangle
$\angle L N O=140^{\circ}$	Opposite angles in parallelogram are equal.
$\begin{aligned} \angle N O K+\angle L N O & =180^{\circ} \\ \angle N O K & =40^{\circ} \end{aligned}$	Interior angles on same side of transversal
$\angle K L N=40^{\circ}$	Opposite angles in parallelogram are equal.
$\begin{aligned} \angle L N M+\angle L N O & =180^{\circ} \\ \angle L N M & =40^{\circ} \end{aligned}$	Supplementary angles
$\begin{aligned} & \angle J O N=\angle K O N+\angle J O K \\ & \angle J O N=70^{\circ} \end{aligned}$	Property of equality

$\angle M+\angle J O N=180^{\circ}$	Interior angles on same side of transversal
$\angle M=110^{\circ}$	
$\angle M L N+\angle L N M+\angle M=180^{\circ}$	Sum of interior angles in triangle
$\angle M L N=30^{\circ}$	
$\angle K L M=\angle K L N+\angle M L N$	Property of equality
$\angle K L M=70^{\circ}$	

14.

Statement	Justification
$\angle A F N=115^{\circ}$	Given
$\angle N F U+\angle A F N=180^{\circ}$	Supplementary
$\angle N F U=65^{\circ}$	angles
$\angle B N U=149^{\circ}$	Given
$\angle U N F+\angle B N U=180^{\circ}$	Supplementary
$\angle U N F=31^{\circ}$	angles
$\angle F U N+\angle N F U+\angle U N F=180^{\circ}$	Sum of interior
$\angle F U N=84^{\circ}$	angles in triangle

15. a)

Statement	Justification
$\angle Y X Z=35^{\circ}$	Given
$\begin{aligned} \angle A X Z+\angle Y X Z & =180^{\circ} \\ \angle A X Z & =145^{\circ} \end{aligned}$	Supplementary angles
$\angle X Z Y=50^{\circ}$	Given
$\begin{aligned} \angle E Z Y+\angle X Z Y & =180^{\circ} \\ \angle E Z Y & =130^{\circ} \end{aligned}$	Supplementary angles
$\begin{aligned} \angle X Y Z+\angle Y X Z+\angle X Z Y & =180^{\circ} \\ \angle X Y Z & =95^{\circ} \end{aligned}$	Sum of interior angles in triangle
$\begin{aligned} \angle X Y C+\angle X Y Z & =180^{\circ} \\ \angle X Y C & =85^{\circ} \end{aligned}$	Supplementary angles

b) $\angle A X Z+\angle X Y C+\angle E Z Y=145^{\circ}+85^{\circ}+130^{\circ}$ $\angle A X Z+\angle X Y C+\angle E Z Y=360^{\circ}$
16.

Statement	Justification
$M O$ and $N O$ are angle bisectors.	Given
$\angle L N P$ is an exterior angle for $\triangle L M N$.	Given
$\begin{aligned} \angle L+2 a & =2 b \\ \angle L & =2 b-2 a \\ \angle L & =2(b-a) \end{aligned}$	Exterior angle is equal to sum of the two nonadjacent angles.
$\angle O N P$ is an exterior angle for $\triangle M N O$.	Given
$\begin{aligned} \angle O+a & =b \\ \angle O & =b-a \end{aligned}$	Exterior angle is equal to sum of the two nonadjacent angles.
$\begin{aligned} & \angle L=2(b-a) \\ & \angle L=2(\angle O) \end{aligned}$	Substitute for the known quantity.

17. e.g., Drawing a parallel line through one of the vertices and parallel to one of the sides creates three angles whose sum is 180°. The two outside angles are equal to the alternate interior angles in the triangle. The middle angle is the third angle in the triangle. Therefore, the three angles in the triangle add up to 180°.
$\angle P A B=\angle A B C$ and $\angle Q A C=\angle A C B$

18.

Statement	Justification
$\angle B A E=\angle C A E$	Property of angle bisector
Property of isosceles triangle	
$\angle A B D=90^{\circ}+y$	Property of equality
$\angle D A B+\angle A B D+\angle B D A=180^{\circ}$	Sum of interior angles in $2 x+\left(90^{\circ}+y\right)+y=180^{\circ}$ $2 x+2 y=90^{\circ}$ $x+y=45^{\circ}$
$\triangle A B D$ Substitute.	
$\angle A E B=x+y$	$\angle A E B$ is an exterior angle for $\triangle A E D . ~ A n ~$ exterior angle is equal to sum of the two non- adjacent angles. Substitute.

19. e.g.,

Statement	Justification	
$\angle M=L N$	Property of isosceles triangle	
$\angle R \\| M N$	Given	
$\angle D L R=\angle L M N$	Corresponding angles	
$\angle R L N=\angle L N M$	Alternate interior angles	
$\angle L M N=\angle L N M$	Property of isosceles triangle	
$\angle D L R=\angle R L N$	Transitive property	

