Foundations 20 Final Review (Ch. 3 \& 4)

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Determine the length of f to the nearest tenth of a centimetre.

a. $\quad 78.6 \mathrm{~cm}$
b. 79.0 cm
c. 79.4 cm
d. 78.2 cm
2. In $\triangle A B C, a=4.1 \mathrm{~cm}, b=4.4 \mathrm{~cm}$, and $\angle B=64^{\circ}$.

Determine the measure of $\angle C$ to the nearest degree.
a. 59°
b. 57°
c. 61°
d. 55°
3. Determine the measure of θ to the nearest degree.

a. 60°
b. 59°
c. 61°
d. 62°
4. In $\triangle L M N, l=27.0 \mathrm{~cm}, m=31.4 \mathrm{~cm}$, and $\angle N=82^{\circ}$.

Determine the measure of n to the nearest tenth of a centimetre.
a. $\quad 39.0 \mathrm{~cm}$
b. 38.5 cm
c. 39.5 cm
d. 38.0 cm
5. How you would determine the indicated angle measure, if it is possible?

a. not possible
b. primary trigonometric ratios
c. the cosine law
d. the sine law
6. Which law could you use to determine the unknown angle in this triangle?

a. neither the sine law nor the cosine law
b. the cosine law only
c. the sine law and the cosine law
d. the sine law only
7. Determine the unknown angle to the nearest degree.

a. 32°
b. 18°
c. 38°
d. 26°
8. In $\triangle X Y Z, \angle Y=29^{\circ}, x=15.4 \mathrm{~m}$, and $y=12.0 \mathrm{~m}$.

Which statement is true for this set of measurements?
a. This is not a SSA situation.
b. This is a SSA situation; no triangle is possible.
c. This is a SSA situation; only one triangle is possible.
d. This is a SSA situation; two triangles are possible.
9. In $\triangle N O P, O P=175 \mathrm{~mm}$ and $\angle O=57^{\circ}$.

What is the height of the triangle from base $O N$?
a. $\quad 151 \mathrm{~mm}$
b. 147 mm
c. $\quad 143 \mathrm{~mm}$.
d. 139 mm
10. Solve for the unknown side length. Round your answer to one decimal place.
$\frac{q}{\sin 30^{\circ}}=\frac{10.0}{\sin 80^{\circ}}$
a. 5.0
b. 5.1
c. 20.3
d. 0.5

Short Answer

11. Determine the length of d to the nearest tenth of a centimetre.

12. Determine the measure of θ to the nearest degree.

13. Determine the length of s to the nearest tenth of a centimetre.

14. In $\triangle A B C, a=108 \mathrm{~cm}, b=100 \mathrm{~cm}$, and $c=124 \mathrm{~cm}$. Determine the measure of $\angle C$ to the nearest degree.
15. A kayak leaves a dock on Lake Athabasca, and heads due north for 2.8 km . At the same time, a second kayak travels in a direction $\mathrm{N} 70^{\circ} \mathrm{E}$ from the dock for 3.0 km .
Determine the distance between the kayaks, to the nearest tenth of a kilometre.
16. Which rafter is longer and by how much (to the nearest tenth of a foot)?

17. Calculate $\sin 20^{\circ}$ to four decimal places. Predict another angle that will have an equal or opposite trigonometric ratio.
18. Determine the unknown side length to the nearest tenth of a centimetre.

19. Determine the unknown angle measure to the nearest degree.

20. In $\triangle A B C, \angle A=26^{\circ}, a=8.5 \mathrm{~cm}$, and $b=5.0 \mathrm{~cm}$. Determine the number of triangles (zero, one, or two) that are possible for these measurements. Draw the triangle(s) to support your answer.
21. In $\triangle A B C, \angle A=58^{\circ}, a=10.5 \mathrm{~cm}$, and $b=11.4 \mathrm{~cm}$. Determine the number of triangles (zero, one, or two) that are possible for these measurements. Draw the triangle(s) to support your answer.

Problem

22. In $\triangle Q R S, q=8.9 \mathrm{~cm}, r=3.8 \mathrm{~cm}$, and $s=7.2 \mathrm{~cm}$. Solve $\triangle Q R S$ by determining the measure of each angle to the nearest degree. Show your work.
23. While golfing, Vikram hits a tee shot from point T toward a hole at H. However, the ball veers 20° and lands at B. The scorecard says that H is 320 m from T. Vikram walks 200 m to his ball. Sketch a diagram of this situation. How far, to the nearest metre, is his ball from the hole? Show your work.
24. A landowner says that his property is triangular, with one side 500 m long and another side 350 m long. The opposite angle to the 350 m side measures 20°. Determine two possible lengths of the third side, to the nearest metre. Show your work.

Foundations 20 Final Review (Ch. 3 \& 4)
Answer Section

MULTIPLE CHOICE

1. D
2. A
3. D
4. $\quad \mathrm{B} \quad 5 . \quad \mathrm{D}$
5. C
6.

D 8
. D
9. B
10. B

SHORT ANSWER

11. $d=6.2 \mathrm{~cm}$
12. $\theta=53^{\circ}$
13. $s=45.9 \mathrm{~cm}$
14. $\angle C=73^{\circ}$
15. 3.3 km
16. Left rafter is 1.4 ft longer
17. $0.3420 ; 160^{\circ}$
18. $\quad 5.9 \mathrm{~cm}$
19. 40°
20. one triangle:

21. two triangles:

PROBLEM

22.

By the cosine law,

$$
\begin{aligned}
q^{2} & =r^{2}+s^{2}-2 r s \cos Q \\
8.9^{2} & =3.8^{2}+7.2^{2}-2(3.8)(7.2) \cos Q \\
8.9^{2}-3.8^{2}-7.2^{2} & =-2(3.8)(7.2) \cos Q \\
12.93 & =-54.72 \cos Q \\
-\frac{12.93}{54.72} & =\cos Q \\
\cos ^{-1}\left(-\frac{12.93}{54.72}\right) & =\angle Q \\
103.6679 \ldots{ }^{\circ} & =\angle Q
\end{aligned}
$$

$\angle Q$ measures 104°.
By the sine law,

$$
\begin{aligned}
\frac{\sin R}{3.8} & =\frac{\sin 104^{\circ}}{8.9} \\
3.8\left(\frac{\sin R}{3.8}\right) & =3.8\left(\frac{\sin 104^{\circ}}{8.9}\right) \\
\sin R & =0.4142 \ldots \\
\angle R & =\sin ^{-1}(0.4142 \ldots) \\
\angle R & =24.4762 \ldots
\end{aligned}
$$

$\angle R$ measures 24°.
$\angle Q=180^{\circ}-\angle R-\angle S$
$\angle Q=180^{\circ}-24.4762 \ldots{ }^{\circ}-103.6679 \ldots{ }^{\circ}$
$\angle Q=51.8578 \ldots{ }^{\circ}$
$\angle Q$ measures 52°.
23.

By the cosine law,

$$
\begin{aligned}
t^{2} & =h^{2}+b^{2}-2 h b \cos T \\
t^{2} & =2000^{2}+320^{2}-2(200)(320) \cos 20^{\circ} \\
t^{2} & =22119.344 \ldots \\
t & =148.725 \ldots
\end{aligned}
$$

Vikram's ball is 149 m from the hole.
24.

A rough (not-to-scale) sketch of the situation is shown, with known sides and angles labelled.

The third side is either 165 m or 775 m .

